博客
关于我
TensorFlow 2——导数和微分
阅读量:368 次
发布时间:2019-03-05

本文共 946 字,大约阅读时间需要 3 分钟。

TensorFlow Sigmoid 函数求导详解

Sigmoid 函数是一种常见的激活函数,其表达式为:

s i g m o i d ( x ) = 1 / (1 + e^{-x})

本文将详细介绍如何使用 TensorFlow 计算 Sigmoid 函数的导数。

1. Sigmoid 函数求导基本原理

Sigmoid 函数的导数可以通过基本的微积分法则求出。假设函数定义为:

s(x) = 1 / (1 + e^{-x})

对 x 求导可得:

s'(x) = s(x) * (1 - s(x))

这意味着 Sigmoid 函数的导数可以表示为:

s'(x) = s(x) * (1 - s(x))

2. 使用 TensorFlow 计算 Sigmoid 导数

TensorFlow 提供了丰富的数学运算功能,可以轻松实现上述导数计算。以下是具体实现步骤:

import tensorflow as tf# 定义 Sigmoid 函数def sigmoid(x):    s = 1 / (1 + tf.math.exp(-x))    return s# 初始化变量x = tf.Variable([-10.0, 10.0])# 使用 GradientTape 追踪梯度with tf.GradientTape() as tape:    s = sigmoid(x)    # 计算 Sigmoid 函数的导数    derivative = tape.gradient(s, x)    # 打印导数结果print("Sigmoid 函数的导数为:", derivative.numpy())

3. 视觉化结果

通过上述代码可以生成 Sigmoid 函数及其导数的图形化展示。导数图像呈现出 S 形曲线的对数转折点特征。

4. 自动微分的优势

TensorFlow 的 GradientTape 功能能够自动追踪并计算变量的梯度,这使得手动计算导数的过程更加简便。无需手动编写链式法则,就能轻松获得所需的梯度信息。

通过上述方法,我们可以清晰地看到 Sigmoid 函数及其导数的计算过程及其在 TensorFlow 中的应用。这个过程不仅适用于单变量函数,也可以扩展到多变量场景。

转载地址:http://igag.baihongyu.com/

你可能感兴趣的文章
Omi 多端开发之 - omip 适配 h5 原理揭秘
查看>>
On Error GOTO的好处
查看>>
onclick事件的基本操作
查看>>
oncopy和onpaste
查看>>
onCreate中的savedInstanceState作用
查看>>
onCreate()方法中的参数Bundle savedInstanceState 的意义用法
查看>>
One good websit for c#
查看>>
One-Shot学习/一次学习(One-shot learning)
查看>>
OneASP 安全公开课,深圳站, Come Here, Feel Safe!
查看>>
OneBlog Shiro 反序列化漏洞复现
查看>>
oneM2M
查看>>
Oneplus5重装攻略
查看>>
one_day_one--mkdir
查看>>
ONI文件生成与读取
查看>>
Vue 项目中实现高效的消息提示与确认对话框功能(模版)
查看>>
Online PDF to PNG、JPEG、WEBP、 TXT - toolfk
查看>>
onlstm时间复杂度_CRF和LSTM 模型在序列标注上的优劣?
查看>>
onlyoffice新版5.1.2版解决中文汉字输入重复等问题
查看>>
onnx导出动态输入
查看>>
onnx导出动态输入
查看>>