博客
关于我
TensorFlow 2——导数和微分
阅读量:368 次
发布时间:2019-03-05

本文共 946 字,大约阅读时间需要 3 分钟。

TensorFlow Sigmoid 函数求导详解

Sigmoid 函数是一种常见的激活函数,其表达式为:

s i g m o i d ( x ) = 1 / (1 + e^{-x})

本文将详细介绍如何使用 TensorFlow 计算 Sigmoid 函数的导数。

1. Sigmoid 函数求导基本原理

Sigmoid 函数的导数可以通过基本的微积分法则求出。假设函数定义为:

s(x) = 1 / (1 + e^{-x})

对 x 求导可得:

s'(x) = s(x) * (1 - s(x))

这意味着 Sigmoid 函数的导数可以表示为:

s'(x) = s(x) * (1 - s(x))

2. 使用 TensorFlow 计算 Sigmoid 导数

TensorFlow 提供了丰富的数学运算功能,可以轻松实现上述导数计算。以下是具体实现步骤:

import tensorflow as tf# 定义 Sigmoid 函数def sigmoid(x):    s = 1 / (1 + tf.math.exp(-x))    return s# 初始化变量x = tf.Variable([-10.0, 10.0])# 使用 GradientTape 追踪梯度with tf.GradientTape() as tape:    s = sigmoid(x)    # 计算 Sigmoid 函数的导数    derivative = tape.gradient(s, x)    # 打印导数结果print("Sigmoid 函数的导数为:", derivative.numpy())

3. 视觉化结果

通过上述代码可以生成 Sigmoid 函数及其导数的图形化展示。导数图像呈现出 S 形曲线的对数转折点特征。

4. 自动微分的优势

TensorFlow 的 GradientTape 功能能够自动追踪并计算变量的梯度,这使得手动计算导数的过程更加简便。无需手动编写链式法则,就能轻松获得所需的梯度信息。

通过上述方法,我们可以清晰地看到 Sigmoid 函数及其导数的计算过程及其在 TensorFlow 中的应用。这个过程不仅适用于单变量函数,也可以扩展到多变量场景。

转载地址:http://igag.baihongyu.com/

你可能感兴趣的文章
Networkx写入Shape文件
查看>>
NetworkX系列教程(11)-graph和其他数据格式转换
查看>>
Networkx读取军械调查-ITN综合传输网络?/读取GML文件
查看>>
NetworkX:是否为每个节点添加超链接?
查看>>
network小学习
查看>>
Netwox网络工具使用详解
查看>>
Net与Flex入门
查看>>
Net任意String格式转换为DateTime类型
查看>>
net包之IPConn
查看>>
net发布的dll方法和类显示注释信息(字段说明信息)[图解]
查看>>
Net处理html页面元素工具类(HtmlAgilityPack.dll)的使用
查看>>
Net操作Excel(终极方法NPOI)
查看>>
Net操作配置文件(Web.config|App.config)通用类
查看>>
Net连接mysql的公共Helper类MySqlHelper.cs带MySql.Data.dll下载
查看>>
NeurIPS(神经信息处理系统大会)-ChatGPT4o作答
查看>>
neuroph轻量级神经网络框架
查看>>
Neutron系列 : Neutron OVS OpenFlow 流表 和 L2 Population(7)
查看>>
new Blob()实现不同类型的文件下载功能
查看>>
NEW DATE()之参数传递
查看>>
New Journey--工作五年所思所感小记
查看>>