博客
关于我
TensorFlow 2——导数和微分
阅读量:368 次
发布时间:2019-03-05

本文共 946 字,大约阅读时间需要 3 分钟。

TensorFlow Sigmoid 函数求导详解

Sigmoid 函数是一种常见的激活函数,其表达式为:

s i g m o i d ( x ) = 1 / (1 + e^{-x})

本文将详细介绍如何使用 TensorFlow 计算 Sigmoid 函数的导数。

1. Sigmoid 函数求导基本原理

Sigmoid 函数的导数可以通过基本的微积分法则求出。假设函数定义为:

s(x) = 1 / (1 + e^{-x})

对 x 求导可得:

s'(x) = s(x) * (1 - s(x))

这意味着 Sigmoid 函数的导数可以表示为:

s'(x) = s(x) * (1 - s(x))

2. 使用 TensorFlow 计算 Sigmoid 导数

TensorFlow 提供了丰富的数学运算功能,可以轻松实现上述导数计算。以下是具体实现步骤:

import tensorflow as tf# 定义 Sigmoid 函数def sigmoid(x):    s = 1 / (1 + tf.math.exp(-x))    return s# 初始化变量x = tf.Variable([-10.0, 10.0])# 使用 GradientTape 追踪梯度with tf.GradientTape() as tape:    s = sigmoid(x)    # 计算 Sigmoid 函数的导数    derivative = tape.gradient(s, x)    # 打印导数结果print("Sigmoid 函数的导数为:", derivative.numpy())

3. 视觉化结果

通过上述代码可以生成 Sigmoid 函数及其导数的图形化展示。导数图像呈现出 S 形曲线的对数转折点特征。

4. 自动微分的优势

TensorFlow 的 GradientTape 功能能够自动追踪并计算变量的梯度,这使得手动计算导数的过程更加简便。无需手动编写链式法则,就能轻松获得所需的梯度信息。

通过上述方法,我们可以清晰地看到 Sigmoid 函数及其导数的计算过程及其在 TensorFlow 中的应用。这个过程不仅适用于单变量函数,也可以扩展到多变量场景。

转载地址:http://igag.baihongyu.com/

你可能感兴趣的文章
Netty发送JSON格式字符串数据
查看>>
Netty和Tomcat的区别已经性能对比
查看>>
Netty在IDEA中搭建HelloWorld服务端并对Netty执行流程与重要组件进行介绍
查看>>
Netty基础—1.网络编程基础一
查看>>
Netty基础—1.网络编程基础二
查看>>
Netty基础—2.网络编程基础三
查看>>
Netty基础—2.网络编程基础四
查看>>
Netty基础—3.基础网络协议一
查看>>
Netty基础—3.基础网络协议二
查看>>
Netty基础—4.NIO的使用简介一
查看>>
Netty基础—4.NIO的使用简介二
查看>>
Netty基础—5.Netty的使用简介
查看>>
Netty基础—6.Netty实现RPC服务一
查看>>
Netty基础—6.Netty实现RPC服务三
查看>>
Netty基础—6.Netty实现RPC服务二
查看>>
Netty基础—7.Netty实现消息推送服务一
查看>>
Netty基础—7.Netty实现消息推送服务二
查看>>
Netty基础—8.Netty实现私有协议栈一
查看>>
Netty基础—8.Netty实现私有协议栈二
查看>>
Netty多线程 和 Redis6 多线程对比
查看>>