博客
关于我
TensorFlow 2——导数和微分
阅读量:368 次
发布时间:2019-03-05

本文共 946 字,大约阅读时间需要 3 分钟。

TensorFlow Sigmoid 函数求导详解

Sigmoid 函数是一种常见的激活函数,其表达式为:

s i g m o i d ( x ) = 1 / (1 + e^{-x})

本文将详细介绍如何使用 TensorFlow 计算 Sigmoid 函数的导数。

1. Sigmoid 函数求导基本原理

Sigmoid 函数的导数可以通过基本的微积分法则求出。假设函数定义为:

s(x) = 1 / (1 + e^{-x})

对 x 求导可得:

s'(x) = s(x) * (1 - s(x))

这意味着 Sigmoid 函数的导数可以表示为:

s'(x) = s(x) * (1 - s(x))

2. 使用 TensorFlow 计算 Sigmoid 导数

TensorFlow 提供了丰富的数学运算功能,可以轻松实现上述导数计算。以下是具体实现步骤:

import tensorflow as tf# 定义 Sigmoid 函数def sigmoid(x):    s = 1 / (1 + tf.math.exp(-x))    return s# 初始化变量x = tf.Variable([-10.0, 10.0])# 使用 GradientTape 追踪梯度with tf.GradientTape() as tape:    s = sigmoid(x)    # 计算 Sigmoid 函数的导数    derivative = tape.gradient(s, x)    # 打印导数结果print("Sigmoid 函数的导数为:", derivative.numpy())

3. 视觉化结果

通过上述代码可以生成 Sigmoid 函数及其导数的图形化展示。导数图像呈现出 S 形曲线的对数转折点特征。

4. 自动微分的优势

TensorFlow 的 GradientTape 功能能够自动追踪并计算变量的梯度,这使得手动计算导数的过程更加简便。无需手动编写链式法则,就能轻松获得所需的梯度信息。

通过上述方法,我们可以清晰地看到 Sigmoid 函数及其导数的计算过程及其在 TensorFlow 中的应用。这个过程不仅适用于单变量函数,也可以扩展到多变量场景。

转载地址:http://igag.baihongyu.com/

你可能感兴趣的文章
NPM使用前设置和升级
查看>>
npm入门,这篇就够了
查看>>
npm切换到淘宝源
查看>>
npm切换源淘宝源的两种方法
查看>>
npm前端包管理工具简介---npm工作笔记001
查看>>
npm包管理深度探索:从基础到进阶全面教程!
查看>>
npm升级以及使用淘宝npm镜像
查看>>
npm发布包--所遇到的问题
查看>>
npm发布自己的组件UI包(详细步骤,图文并茂)
查看>>
npm和package.json那些不为常人所知的小秘密
查看>>
npm和yarn清理缓存命令
查看>>
npm和yarn的使用对比
查看>>
npm如何清空缓存并重新打包?
查看>>
npm学习(十一)之package-lock.json
查看>>
npm安装 出现 npm ERR! code ETIMEDOUT npm ERR! syscall connect npm ERR! errno ETIMEDOUT npm ERR! 解决方法
查看>>
npm安装crypto-js 如何安装crypto-js, python爬虫安装加解密插件 找不到模块crypto-js python报错解决丢失crypto-js模块
查看>>
npm安装教程
查看>>
npm报错Cannot find module ‘webpack‘ Require stack
查看>>
npm报错Failed at the node-sass@4.14.1 postinstall script
查看>>
npm报错fatal: Could not read from remote repository
查看>>