博客
关于我
TensorFlow 2——导数和微分
阅读量:368 次
发布时间:2019-03-05

本文共 946 字,大约阅读时间需要 3 分钟。

TensorFlow Sigmoid 函数求导详解

Sigmoid 函数是一种常见的激活函数,其表达式为:

s i g m o i d ( x ) = 1 / (1 + e^{-x})

本文将详细介绍如何使用 TensorFlow 计算 Sigmoid 函数的导数。

1. Sigmoid 函数求导基本原理

Sigmoid 函数的导数可以通过基本的微积分法则求出。假设函数定义为:

s(x) = 1 / (1 + e^{-x})

对 x 求导可得:

s'(x) = s(x) * (1 - s(x))

这意味着 Sigmoid 函数的导数可以表示为:

s'(x) = s(x) * (1 - s(x))

2. 使用 TensorFlow 计算 Sigmoid 导数

TensorFlow 提供了丰富的数学运算功能,可以轻松实现上述导数计算。以下是具体实现步骤:

import tensorflow as tf# 定义 Sigmoid 函数def sigmoid(x):    s = 1 / (1 + tf.math.exp(-x))    return s# 初始化变量x = tf.Variable([-10.0, 10.0])# 使用 GradientTape 追踪梯度with tf.GradientTape() as tape:    s = sigmoid(x)    # 计算 Sigmoid 函数的导数    derivative = tape.gradient(s, x)    # 打印导数结果print("Sigmoid 函数的导数为:", derivative.numpy())

3. 视觉化结果

通过上述代码可以生成 Sigmoid 函数及其导数的图形化展示。导数图像呈现出 S 形曲线的对数转折点特征。

4. 自动微分的优势

TensorFlow 的 GradientTape 功能能够自动追踪并计算变量的梯度,这使得手动计算导数的过程更加简便。无需手动编写链式法则,就能轻松获得所需的梯度信息。

通过上述方法,我们可以清晰地看到 Sigmoid 函数及其导数的计算过程及其在 TensorFlow 中的应用。这个过程不仅适用于单变量函数,也可以扩展到多变量场景。

转载地址:http://igag.baihongyu.com/

你可能感兴趣的文章
nacos config
查看>>
Nacos在双击startup.cmd启动时提示:Unable to start embedded Tomcat
查看>>
Nacos安装教程(非常详细)从零基础入门到精通,看完这一篇就够了
查看>>
Nacos配置中心集群原理及源码分析
查看>>
nacos配置自动刷新源码解析
查看>>
Nacos集群搭建
查看>>
nacos集群搭建
查看>>
nagios安装文档
查看>>
Navicat for MySQL 查看BLOB字段内容
查看>>
Neo4j电影关系图Cypher
查看>>
Neo4j的安装与使用
查看>>
Neo4j(2):环境搭建
查看>>
Neo私链
查看>>
nessus快速安装使用指南(非常详细)零基础入门到精通,收藏这一篇就够了
查看>>
Nessus漏洞扫描教程之配置Nessus
查看>>
Nest.js 6.0.0 正式版发布,基于 TypeScript 的 Node.js 框架
查看>>
nestJS学习
查看>>
NetApp凭借领先的混合云数据与服务把握数字化转型机遇
查看>>
NetBeans IDE8.0需要JDK1.7及以上版本
查看>>
netbeans生成的maven工程没有web.xml文件 如何新建
查看>>